N. Mitikov, N. Guk, Yu. Honcharova

REAL-WORLD EXAMPLE OF APPLICATION PERFORMANCE ANOMALY
DETECTION THROUGH MEMORY ANALYSIS

The growing complexity of modern software applications has led to
the emergence of various performance-related issues that significantly degrade
application performance and negatively impact user experience. The constant
evolution of software applications and hardware architectures has led to a diverse
range of memory behaviors, complicating the development of a one-size-fits-all
solution. Given that just-in-time (JIT) compilation can effectively convert source
code [1] into machine-specific instructions, it is plausible to reverse process by
comprehensively capturing and analyzing the memory contents associated with
the execution of the application. As memory snapshots encompass thread-associated
data structures, they inherently contain valuable information pertaining to the operations
executed by the respective threads, thus providing insights into the runtime behavior
of an application.

The Event Tracing [2] technique, integrated into the operating system
kernel, can be activated to generate detailed information that reveals
the activities of each thread at millisecond granularity. Consequently, this
allows for a comprehensive understanding of time distribution within the scope
of various operations, thereby enabling the analysis of application performance and
potential bottlenecks.

The real-life event tracing from underperforming system has revealed that 2.5%

of exclusive CPU time is spent on ‘InitializeCounters’ method:

By Name ! ' Caller-Callee 7 | CallTree 7 | Callers 7 | Callees ? | Flame Graph 7 | Notes 7

MName ? Inc 7 Exc% 7

OTHER <<mscorlib.ni!System.Collections.Hashtable.get_ltem(System.Object) > »
OTHER <<clrIT_New> >

OTHER <<mscorlib.ni!System Collections.Concurrent.ConcurrentDictionary 2[System._ Canon System. Canon]. TryGetValue(System. _ Canon, System. Canon ByRef)> >
itecore.Kernel!Sitecore. Diagnostics.PerformanceCounters. PerformanceCounter.InitializeCounter()
OTHER <<mscorlib.ni!System.5tring.Concat(System.Object(])>>

Fig. 1 — CPU event tracing holds Diagnostics in TOP 5 most CPU-consuming functions

~280~

Upon conducting reverse-engineering of the method body [3] from memory
snapshot [4], it becomes evident that the implementation employs a thread-safe
application programming interface (API) despite the absence of any technical
necessity for such an approach. Upon recreating the model and processing it through
Intel VTune profiler the ‘LOCK CMPXCHG’ instruction is seen to consume

the most of time:

0x7Ma558M0ada 44 cmp dword ptr [rsi+0x8], Oxl
0x7ffa55910ade 44 4z 0xTLIa559f0045 <Block 11>

X7 0.334s |
0x7ffa550f0ael Block 2:

Ox7ffa555f0ae0 44 lea rdi, ptr [rsi+0x8] 0.268s
0xTMa5580aed 44 mov rcx, rdi 0.010s
0x7ffa55910ae7? 44 call OxVifablocOf3Q 16.245s |

0x7ffa558f0aec Block 3:

0x7ffa559f0aec cmp eax, Ol 3.986s |
0xTMa559f0aet 44 J2 0xTE£5559f0p45 <Block 11>

0x7ffa559f0af1 Block 4:

0x7ffa569f0af1 lea rbx, ptr [rsi+0xzc] 0.001s
Ox7ffa555f0af5
0x7ifa550f0afa
0xTffa559f0afc
Ox7ffa559f0b00
Ox7ffa555f0b03 1z 0x7ffa55970hd5 <B
0x7ffa559f0b05 Block 5:
Ox7Ta559f0b05 cmp byte ptr [rsi+0xi0], 0x0
Ox7ffa550f0b09 12 Ox7fTaS59f004es <plock 13

£

37.9¢

mov ecx, Oxl
XOr 2ax, eax

dword ptr [rbxl, ecx 0.285s |
cmp eax, Oxl 15.708s |

$ 0 35 345 4 3 3

45 3

Fig. 2 — Exclusive access involving cache coherency across all cores

The execution of the LOCK CMPXCHG instruction [5] in Intel processors
has a direct impact on the processor's L1 and L2 caches. When the LOCK prefix is
used in conjunction with the CMPXCHG instruction, it guarantees exclusive access
to the memory location involved in the operation.

To ensure mutual exclusion, the processor must enforce cache coherency
across all cores which may involve invalidating or updating the cache lines in other
cores' L1 and L2 caches that hold the targeted memory location. Consequently,
the LOCK CMPXCHG instruction may result in increased cache coherency traffic,
leading to performance implications such as increased latency and reduced
throughput.

The conditions order change to firstly check if counter is allowed to be
initialized resulted in over 22 times execution speed improvement from 5.8 seconds

to 0.26 seconds according to Intel VTune profiler results:

~281~

() Elapsed Time : 5.842s
Clackticks:

205 509,600,000

<) Elapsed Time ": 0.259s
44,622,000,000

6,656.400,000
21,380,400,000

Fig. 3 — Visible performance difference

Conclusion

The research was performed by combining event tracing and memory
snapshot sources.

Event tracing has highlighted the most CPU-consuming methods, while
memory snapshot has supplied executed code as well as thread information.

Both original candidate code versions were benchmarked by Intel VTune

profiler to collect the execution statistics.

REFERENCES

1. Konrad Kokosa, Pro .NET Memory Management, For Better Code, Performance, and
Scalability, 2018 ISBN 978-1-4842-4026-7

2. Brendan Gregg, Systems Performance, Enterprise and the Cloud, Second Edition, 2021
ISBN-10: 0-13-682015-8

3. Mario Hewardt, Advanced .NET debugging, 2010 ISBN 978-0-321-57889-1

4. Mark Russinovich, Aaron Margosis Troubleshooting with the Windows Sysinternals
Tools, 2016 ISBN: 978-0-7356-8444-7

5. Intel® 64 and 1A-32 Architectures Software Developer’s Manual, 2023

6. Intel® VTune™ Profiler User Guide

~282~

