
~ 280 ~ 

N. Mitikov, N. Guk, Yu. Honcharova 

 

REAL-WORLD EXAMPLE OF APPLICATION PERFORMANCE ANOMALY 

DETECTION THROUGH MEMORY ANALYSIS 

 

The growing complexity of modern software applications has led to 

the emergence of various performance-related issues that significantly degrade 

application performance and negatively impact user experience. The constant 

evolution of software applications and hardware architectures has led to a diverse 

range of memory behaviors, complicating the development of a one-size-fits-all 

solution. Given that just-in-time (JIT) compilation can effectively convert source 

code [1] into machine-specific instructions, it is plausible to reverse process by 

comprehensively capturing and analyzing the memory contents associated with 

the execution of the application. As memory snapshots encompass thread-associated 

data structures, they inherently contain valuable information pertaining to the operations 

executed by the respective threads, thus providing insights into the runtime behavior 

of an application. 

The Event Tracing [2] technique, integrated into the operating system 

kernel, can be activated to generate detailed information that reveals 

the activities of each thread at millisecond granularity. Consequently, this 

allows for a comprehensive understanding of time distribution within the scope 

of various operations, thereby enabling the analysis of application performance and 

potential bottlenecks. 

The real-life event tracing from underperforming system has revealed that 2.5% 

of exclusive CPU time is spent on ‘InitializeCounters’ method: 

 

Fig. 1 – CPU event tracing holds Diagnostics in TOP 5 most CPU-consuming functions 



~ 281 ~ 

Upon conducting reverse-engineering of the method body [3] from memory 

snapshot [4], it becomes evident that the implementation employs a thread-safe 

application programming interface (API) despite the absence of any technical 

necessity for such an approach. Upon recreating the model and processing it through 

Intel VTune profiler the ‘LOCK CMPXCHG’ instruction is seen to consume 

the most of time: 

 

Fig. 2 – Exclusive access involving cache coherency across all cores 

 

The execution of the LOCK CMPXCHG instruction [5] in Intel processors 

has a direct impact on the processor's L1 and L2 caches. When the LOCK prefix is 

used in conjunction with the CMPXCHG instruction, it guarantees exclusive access 

to the memory location involved in the operation. 

To ensure mutual exclusion, the processor must enforce cache coherency 

across all cores which may involve invalidating or updating the cache lines in other 

cores' L1 and L2 caches that hold the targeted memory location. Consequently, 

the LOCK CMPXCHG instruction may result in increased cache coherency traffic, 

leading to performance implications such as increased latency and reduced 

throughput. 

The conditions order change to firstly check if counter is allowed to be 

initialized resulted in over 22 times execution speed improvement from 5.8 seconds 

to 0.26 seconds according to Intel VTune profiler results: 



~ 282 ~ 

 

Fig. 3 – Visible performance difference 

 

Conclusion 

The research was performed by combining event tracing and memory 

snapshot sources. 

Event tracing has highlighted the most CPU-consuming methods, while 

memory snapshot has supplied executed code as well as thread information. 

Both original candidate code versions were benchmarked by Intel VTune 

profiler to collect the execution statistics. 

 
REFERENCES 

1. Konrad Kokosa, Pro .NET Memory Management, For Better Code, Performance, and 
Scalability, 2018 ISBN 978-1-4842-4026-7 

2. Brendan Gregg, Systems Performance, Enterprise and the Cloud, Second Edition, 2021 
ISBN-10: 0-13-682015-8 

3. Mario Hewardt, Advanced .NET debugging, 2010 ISBN 978-0-321-57889-1 
4. Mark Russinovich, Aaron Margosis Troubleshooting with the Windows Sysinternals 

Tools, 2016 ISBN: 978-0-7356-8444-7 
5. Intel® 64 and IA-32 Architectures Software Developer’s Manual, 2023 
6. Intel® VTune™ Profiler User Guide 

 

 

 

 

 

 

 




